MIKROBIOLOŠKA KONTROLA BUNARSKE VODE U SELIMA OPĆINE BRESTOVAC

ZAVRŠNI RAD

Požega, 2017. godine.
Veleučilište u Požegi
Poljoprivredni odjel
Preddiplomski stručni studij Prehrambena tehnologija

MIKROBIOLOŠKA KONTROLA BUNARSKE VODE
U SELIMA OPĆINE BRESTOVAC

ZAVRŠNI RAD
IZ KOLEGIJA TEHNOLOGIJA VODE I OBRADA OTPADNIH VODA

Mentor: Ana Mrgan, dipl.ing.
Student: Marko Ilić
Matični broj studenta: 1227/12

Požega, 2017. godine
Sažetak:

Abstract:
The aim of this final work is to make the sampling and microbiological analysis of drinking water from private wells. Water samples for analysis were taken from six locations Municipality Brestovac. Analysis of drinking water is performed in a certified laboratory for analysis of drinking water in the Institute of Public Health of Pozega-Slavonia County. Water samples were analyzed for micro-organisms total coliforms, *Escherichia coli*, Enterococci, *Pseudomonas aeruginosa*, and the total number of bacteria at 37°C and 22°C. The analysis of the samples taken is showed that none of the water samples does not match the maximum permitted concentration of the legislation.

Keywords: microbiological testing of water, wells, *Escherichia coli*, Enterococci, *Pseudomonas aeruginosa*.
PREGLED LITERATURE ... 2
2.1. Voda .. 2
2.2. Zakonska regulativa ... 3
2.3. Rad u laboratoriju ... 4
2.4. Uzorkovanje vode ... 4
2.5. Općenito o bakterijama .. 5
 2.5.1. Građa bakterije ... 5
 2.5.2. Rast i razmnožavanje bakterija .. 7
 2.5.3. Koliformne bakterije .. 8
 2.5.4. Escherichia coli ... 8
 2.5.5. Enterokoki ... 9
 2.5.6. Pseudomonas aeruginosa .. 9
2.6. Hranjive podloge .. 9
MATERIJALI I METODE ... 10
3.1. Opis bunara ... 10
3.2. Metoda membranske filtracije ... 11
3.3. Detekcijska brojanje Escherichia coli i koliformnih bakterija metodom membranske filtracije .. 12
3.4. Detekcijska brojanje Enterokoka metodom membranske filtracije ... 14
3.5. Priprema podloge i određivanje ukupnog broja kolonija na 22°C i 37°C .. 16
3.6. Metoda detekcijske brojanje Pseudomonas aeruginosa metodom membranske filtracije ... 18
 3.6.1. Oxidaza test ... 19
 3.6.2. King's B medij ... 19
 3.6.3. Acetamid bujon ... 20
REZULTATI .. 21
RASPRAVA .. 24
ZAKLJUČAK .. 25
LITERATURA ... 26
1. UVOD

Poznato je da je voda jedan od osnovnih uvjeta za život na našoj planeti, jer je neophodna za odvijanje svih vitalnih procesa u biosferi. Uloga vode je nezamjenjivija u razmjeni nutrijenata u čovjekovom organizmu, u održavanju osobne i opće higijene. Osim fiziološке potrebe, voda ima jako značajnu ulogu u ekonomskom smislu, gdje služi u proizvodnji namirnica i u zadovoljenju brojnih potreba u prirodi, poljoprivredi i industriji. Uz sve dobrobiti što donosi voda, ona je vektor za prenošenje ne samo veoma teških zaraza, već i opasnih kemikalija, kancerogenih, radioaktivnih i drugih materijala. Zbog velike onečišćenosti prirodnih voda mnoge države, pa i međunarodna zajednica, nastoje da zaštite vode, a posebno vodu za piće, od bilo kojeg oblika onečišćenja. Onečišćenje vode za piće i utvrđivanje stupnja njene zagađenosti, mnogobrojnim mikrobiološkim i fizičkim zagađivačima i raznovrsnim kemijskim sastojcima, postaje sve veći zdravstveni i općedruštveni problem.

Mikrobiološka ispravnost vode je jedan od najznačajnijih pokazatelja kvalitete vode za piće. Mikroorganizmi u vodu mogu dospjeti putem raznih zagađenja ispiranjem zemljišta, iz zraka ili najčešće ispuštanjem različitih otpadnih voda. Osiguranje zdravstvene ispravnosti vode za piće, jedna je od osnovnih mjera zaštite zdravlja ljudi. Zdravstveno neispravna voda može uzrokovati razne bolesti. Potrebno je zaštiti izvorišta vode za piće, pročišćavati vodu i redovno ispitivati kvalitetu vode, a kontrola zdravstvene ispravnosti vode za piće, u Republici Hrvatskoj provodi se u skladu sa Zakonom o vodi za ljudsku potrošnju.

Cilj ovog završnog rada je provesti uzorkovanje bunarske vode sa više lokacija općine Brestovac i pomoću analitičkih metoda utvrditi dali je bunarska voda uzetih uzoraka mikrobiološki čista i dali takva voda zadovoljava parametre koji su određeni u zakonskoj regulativi.
2. PREGLED LITERATURE

2.1. Voda

2.2. Zakonska regulativa

U tablici 1 prikazani su parametri zdravstvene ispravnosti vode za ljudsku potrošnju sa pripadajućim maksimalno dopuštenim koncentracijama (MDK), koji se prate u cilju zaštite ljudskog zdravlja, od nepovoljnih utjecaja mikrobiološkog onečišćenja vode za ljudsku potrošnju i osiguravanja zdravstvene ispravnosti vode za ljudsku potrošnju.

<table>
<thead>
<tr>
<th>Pokazatelj</th>
<th>Jedinice voda za piće</th>
<th>MDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli (E.Coli)</td>
<td>broj/100 ml</td>
<td>0</td>
</tr>
<tr>
<td>Ukupni koliformni</td>
<td>broj/100 ml</td>
<td>0</td>
</tr>
<tr>
<td>Enterokoki</td>
<td>broj/100 ml</td>
<td>0</td>
</tr>
<tr>
<td>Broj kolonija 22°C</td>
<td>broj/1 ml</td>
<td>100</td>
</tr>
<tr>
<td>Broj kolonija 37°C</td>
<td>broj/1 ml</td>
<td>20</td>
</tr>
<tr>
<td>Clostridium perfringens (uključujući spore)</td>
<td>broj/100 ml</td>
<td>0</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>broj/100 ml</td>
<td>0</td>
</tr>
</tbody>
</table>
2.3. Rad u laboratoriju

Laboratorij je organizacijsko-radna cjelina u kojoj se izvode različita ispitivanja, a u njegovom radu se upotrebljavaju posebna oprema i uređaji (Wikipedia, 1.10.2016.,url). Prilikom rada u laboratoriju, potrebno je slijediti određena pravila ili upute, kako bi se održala sigurnost osoblja i okoline. Osoblje koje radi u laboratoriju posebno mora paziti na sigurnost, kako ne bi došlo do laboratorijske nezgode. Laboratorijski prostor i oprema se mora držati tokom rada konstantno čistim kako ne bi došlo do kontaminacije izvana. Kako je najveći broj postupaka u laboratoriju rad s mikroorganizmima, sastavni dio rada je sterilnost prostora i opreme. Prilikom ulaska u laboratorij, treba ostaviti svu garderobu i druge predmeta na za to predviđenom mjestu, nikako na radni stol. Tijekom rada u laboratoriju moraju biti zatvorena sva vrata i prozori u prostoriji, kako bi se spriječila kontaminacija zračnim strujanjem. Prije rada u laboratoriju i obavljanja analiza, potrebno je temeljito oprati ruke s tekućim deterdžentom ili sapunom, te ruke posušiti s papirnatim ručnikom. Osobe koje imaju dugu kosu prije rada trebaju kosu zavezati, ili nositi papirnatu kapu. Tijekom cijelog rada u laboratoriju, analitičar treba nositi kutu radi zaštite od kontaminacije. Nakon završetka laboratorijskih analiza sav upotrijebljeni materijal, pribor i reagensi odlažu se, na za to predviđeno mjesto. Sve zatvorene epruvete, Petrijeve zdjelice, koje su bile upotrijebljene odlažu se zajedno, radi kasnije sterilizacije u autoklavu. Nakon upotrebe, opasne kemikalije se trebaju spremiti u posude koje se mogu zatvoriti prije odlaganja, na predviđeno mjesto (Duraković & Duraković, 1997).

2.4. Uzorkovanje vode

Uzorak vode je količina jednokratno uzete vode na jednom mjestu, na propisani način u svrhu laboratorijske analize. Uzimanje vode na slavinama za potrebne fizikalno-kemijske, kemijske i mikrobiološke analize, vrši se u već pripremljene spremnike u skladu s važećim zakonskim propisima. Treba ukloniti sve nastavke sa slavine, kao što su mrežice, gumena crijeva, prskalice i drugo. Otvori se slavina i pusti da voda teče 3 minute (ispiranje). Kada se ispituje utjecaj materijala na kakvoću vode ili rast mikroorganizama u cjevovodu, tada se uzorkuje početni mlaz. Nakon 3 minute ispiranja slavina se zatvori, te upaljačem ili drugim izvorom plamena spali otvor slavine. Voda za mikrobiološku analizu sipa se direktno iz slavine u spremnik. Nakon stavljanja čepa ostavlja se slobodan prostor ispunjen zrakom, što pomaže miješanju prije ispitivanja i izbjegavanju slučajnog onečišćenja. Pri punjenju treba paziti da ne
dođe do onečišćenja boce, čepa boce i otvora slavine. Tijekom uzorkovanja ne smije se dodirivati grlo boce, vrh čepa boce i otvor slavine (Hrvatski zavod za javno zdravstvo, 20.5.2017., url).

2.5. Općenito o bakterijama

Bakteriologija je znanost koja je dio mikrobiologije i proučava morfološka i uzgojna svojstva bakterija, kao što su rast, metabolizam i genetika. Bakterije su jednostanični organizmi, sa jednim kromosomom bez ovojnice, sa dobro razvijenom staničnom stjenkom i citoplazmatskom membranom, u kojoj se odvija većina sinteza, kao i stvaranje energije. Žive u prirodi, kao veliki skup jedinki, koji je nastao od jedne bakterije (Kalenić et. al., 2013).

Bakterije mogu imati različite oblike. Razlikuju se kuglaste bakterije ili koki, štapićaste bakterije ili bacili, zavojite ili spiralne i bakterije u obliku zareza ili vibrio. Veličina bakterija se mjeri mikrometrima (µm) dok se pojedini dijelovi bakterija mjere nanometrima (nm). Duljina bakterija može biti od 0,3 do 20 µm, dok promjer bakterije može biti od 0,5 do 2,0 µm (Volner et. al., 2005).

2.5.1. Građa bakterije

Slika 1 prikazuje bakterijsku stanicu koja se sastoji od citoplazme, jezgrine tvari ili nukleotida, citoplazmatske membrane i stanične stjenke. U citoplazmi se nalaze plazmidi, ribosomi i citoplazmatska zrnca. Također bakterijska stanica može imati i bićeve, fimbrije, pili, kapsulu i spore.

Citoplazma je najveći dio bakterijske stanice. Prema konzistenciji citoplazma je polutkuća i sadrži oko 70% vode. U citoplazmi su otopljene različite organske i anorganske tvari, enzimi, hranjive tvari i otpadne tvari. U citoplazmi se nalaze nukleotid, plazmidi, ribosomi, inkluzijska tjelašca (Kalenić et. al., 2013).

Nukleotid ili jezgrina tvar, u bakterijskoj stanici se nalazi slobodno rasprostranjenu u središnjem dijelu citoplazme, jer bakterije nemaju jasno definiranu jezgru obavijenu opnom, pa se zato ubrajaju u prokariote. Jezgrina tvar u bakterijskoj stanici većinom sadrži deoksiribonukleinsku kiselinu DNA i nešto ribonukleinske kiseline RNA, prema tome je i nositelj nasljednih uputa (Kalenić et. al., 2013).
Plazmidi svojim oblikom i ulogom nalikuju na kromosome. Kružnog su oblika i sadrže u sebi gene. Plazmidi imaju funkciju nasljednog aparata, neovisno o jezgrinoj tvari (Volner et. al., 2005).

Ribosomi se nalaze u citoplazmi i kuglastog su oblika. Mjesta su gdje se odvija sinteza bjelančevina u bakterijskoj stanici. Većim dijelom se sastoje od RNA, dok su manji dio bjelančevine (Volner, 1996).

Inkluzijska tjelašca se nalaze u citoplazmi u obliku pričuvnih tvari kao zrnca. Mogu biti kao glikogen, polifosfati, sumpor, željezo, plinovi (Kalenić et. al., 2013).

Citoplazmatska membrana omeđuje citoplazmu i sastoje se od lipida i proteina. Lipidi su najvećim dijelom dio fosfolipidnog sloja, dok su proteini intergralni dio membrane ili su vezani za površinu membrane (Kalenić et. al., 2013).

Kapsula se sastoji od tanjeg ili debljeg sloja polisaharida na površini bakterijske stanice, omogućuje bakteriji prihanjanje na površine i štiti ih od isušivanja (Kalenić et. al., 2013).

Fimbrije i pili su kratki i nježni, kruti cjevasti nastavci bakterijskih stanica. Fimbrije sudjeluju u adherenciji bakterija na površine. Bičevi ili flageli su organele, s pomoću kojih se bakterije pokreću. To su tanke šuplje cjevče, promjera 20 nm, a duljine 15-20 µm (Kalinić et. al., 2013).

Slika 1. Bakterijska stanica (Anonymous_1, 15.7.2016.,url)
2.5.2. Rast i razmnožavanje bakterija

Kako bi došlo do razmnožavanja bakterija potrebni su povoljni uvjeti, kao što su hranidbeni, energetski, atmosferski i temperaturni uvjeti. Povoljni uvjeti podrazumijevaju dovoljne količine hranjivih tvari, prisutnost ili odsutnost kisika, što ovisi dali su bakterije aerobne ili anaerobne. Također potrebna je optimalna temperatura za razvoj bakterija, povoljna vlaga, kao i pH okoline. Najveći broj bakterija u prirodi, razmnožava se diobom, pri kojoj od jedne bakterijske stanice nespolnim načinom, nastaju dvije stanice kćeri (Volner, 1996). Bakterije u prirodi mogu živjeti kao čiste kulture, međutim uglavnom žive u zajednici s drugim vrstama organizama ili makroorganizmima. U laboratorijskim uvjetima bakterije se uzgajaju kao čiste kulture, odnosno uzgajaju se na različitim hranjivim podlogama gdje se nalaze jedinke iste vrste.

Slika 2 prikazuje krivulju rasta bakterija u vremenu od trenutka kada je bakterija stavljena na hranjivu podlogu. Krivulja rasta se može podijeliti na šest faza. U prvoj fazi odnosno fazi prilagodbe ili suzdržanog rasta bakterije se prilagođavaju na novu sredinu, rastu i pripremaju za diobu. U drugoj fazi odnosno fazi ubrzanog rasta, bakterije imaju dovoljno hranidbenih tvari i stvoreni su optimalni uvjeti za rast. U trećoj fazi dolazi do eksponencijalnog rasta bakterija i do povećanja bakterijske mase. Nakon eksponencijalnog rasta dolazi do smanjenja količine hranidbenih tvari i nastajanja štetnih nusproizvoda, te se zbog njihovog štetnog djelovanja rast i dioba bakterija usporavaju, što se naziva faza usporenog rasta. Poslije faze usporenog rasta bakterije počinju štetiti hranidbenе tvari i energiju te dolazi do faze zastoja rasta. U šestoj fazi dolazi do smanjenja bakterijske mase kao i broja bakterija, te se ta faza može nazvati faza ugibanja (Volner, 1996).

2.5.3. Koliformne bakterije

Koliformne bakterije su Gram-negativne bakterije (aerobni ili fakultativno anaerobni, sporogeni mikroorganizmi), koji u roku od 48 sati uzgojem u laktoznom bujonu sa Durhamovim cjevčicama proizvode plin i kiselinu, pri temperaturi od 35-37°C. Koliformne bakterije su primarno nepatogene bakterije, koje žive u debelom crijevu čovjeka i toplokrvnih životinja. Koliformne bakterije se izlučuju fekalijama, te dospijevaju u otpadne vode, a preko njih u prirodne vode (E-škola, 12.6.2016., url).

![Slika 3. Plavo obojene kolonije Escherichia coli i žućkasto obojene kolonije drugih koliformnih bakterija](E-škola, 12.6.2016., url)

2.5.4. *Escherichia coli*

Rod *Escherichia* ima pet vrsta od kojih je *E. coli* najznačajnija i najprostranjenija. Od svih *Enterobakterija*, *E. coli* je najčešći uzročnik crijevne infekcije kod čovjeka. *E. coli* je po fiziologiji i strukturi tipična *Enterobakterija*. To su kratki Gram-negativni štapići, veličine 2 do 6 µm. *E. coli* može neko vrijeme preživjeti u ljudskom okolišu kao što je voda, zemlja, kao i u hrani. U hrani se lako i brzo razmnožavaju. *E. coli* je osjetljiva na uobičajene dezinficijense (Duraković & Duraković, 1997).
2.5.5. Enterokoki

Enterokoki su Gram-positivne bakterije. Stanice enterokoka obično imaju izduženi oblik, ovalnih koka. Dio su normalne flore probavnog sustava i mogu rasti uz prisutnost velike koncentracije žuči i natrijevog klorida. Zbog određenih karakteristika Enterokoki su sposobni rasti i razmnožavati se u nepovoljnim uvjetima, te su rasprostranjeni svugdje u prirodi, biljkama, vodi, tlu i životinjama. Kod ljudi mogu uzrokovati infekcije mokraćnog sustava, kao i respiratorne probleme (Duraković, Duraković, 1997).

2.5.6. *Pseudomonas aeruginosa*

Bakterije iz roda *Pseudomonas* su aerobni Gram-negativni štapići duljine 1,5-5 µm, a širine 0,5-1 µm te se pojavljuju pojedinačno, u parovima ili lancima. Mogu se razmnožavati na temperaturi od 4-42°C, dok ih je većina mezofilna i raznožavaju se na temperaturi između 30-35°C. Unutar roda *Pseudomonas* najznačajnija je *Pseudomonas aeruginosa*, koja ima sposobnost naglog rasta, te posjeduje brojne čimbenike virulencije i toksičnosti. *Pseudomonas aeruginosa* najčešće uzrokuje infekcije kod osoba sa oslabljenim imunološkim sustavom i infekcije, respiratornog sustava, kože, oka i mokraćnog sustava (Duraković, Duraković, 1997).

2.6. Hranjive podloge

U laboratoriju se upotrebljavaju različite hranjive podloge za uzgoj mikroorganizama, ovisno o hranidbenim potrebama mikroorganizama. Različiti mikroorganizmi trebaju različitu okolinu i kombinaciju hranjivih tvari, za svoj rast i razmnožavanje. Hranjive podloge se mogu pripremiti kao tekuće, kao što je hranjivi bujon ili krute kao što je agar. Agar je polisaharid, a koristi se za skrućivanje tekućih podloga. Dobiva se ekstrakcijom crvenih morskih algi. Najvažniji sastojak agara je agarosa, koja je po sastavu spoj sastavljen od jedinica 3,6-anhidro-L-galaktoze, povezanih 1, 4-vezom i D-galaktoze. U upotrebi su i kemijski definirane podloge, koje u svom sastavu imaju jasno definirane sastojke, kao što su glukoza, soli, aminokiseline i vitamini (Duraković, Duraković, 1997).
3. MATERIJALI I METODE

3.1. Opis bunara

U radu se analizirala voda iz nekoliko seoskih bunara sela Pavlovci i Vilić Sela na području Općine Brestovac. Radi se o bunarima u seoskim dvorištima koji su izvori pitke vode za potrebe domaćinstva. Prije izgradnje vodoopskrbne mreže gotovo svako domaćinstvo na području Slavonije, imalo je vlastiti bunar za osobne potrebe. Iako se izgradila vodoopskrbna mreže u nekim naseljima iskorištenost te mreže je u vrlo malom postotku te se voda za piće i druge potrebe koristi iz bunara. U selima koja su obuhvaćena u ovom radu, tek pet posto domaćinstava je priključeno na javni vodoopskrbni sustav, te je iz tih razloga potrebna česta kontrola kvalitete bunarske vode koja se koristi u domaćinstvima. Faktori koji mogu utjecati na zdravstvenu ispravnost vode su: lokacija bunara odnosno udaljenost od mogućih zagađivača, materijali od kojih je bunar izgrađen, vanjska zaštićenost, dubina bunara kao i redovna analiza i dezinfekcija bunarske vode.

Bunar 1.

Bunar 2.

Bunar 3.

Bunar 4.

Bunar 5.

Bunar 6.

3.2. Metoda membranske filtracije

Uređaj za membransku filtraciju prikazan na slici 4, prije upotrebe potrebno je dezinficirati. Dezinfekcija se radi alkoholom, a potom sterilizacija upotrebom plamenika. Ljevak se ukloni, te se sterilnom pincetom, koja se sterilizira plamenom, aseptički prihvati ispitni filtar i sa mrežastim djelom okrenutim prema gore, položi na sredinu osnovice držača filtra. Ljevak filtra se postavi na uređaj za filtriranje i učvrsti držačem. Nakon što se postavi filter i ljevak, u ljevak se ulijeva 100 ml uzorka ispitivane vode, uključi vakum i filtrira cijeli sadržaj. Vakum se isključi odmah nakon završene filtracije. Ukloni se ljevak filtra i sterilnom pincetom makne membranski filtar s osnovice držača filtra, te se stavi na selektivnu podlogu u Petrijevoj zdjelici pazeći da ne zaostanu mjehurići zraka, između membrane i površine agara. Ako zaostanu mjehurići zraka, membranu treba podići i ponovo staviti na agar. Ako se očekuje veći broj kolonija tada treba napraviti razrjeđenje uzorka, na način da se profiltira 10 ml uzorka i 1 ml uzorka pomiješan sa 10 ml sterilne destilirane vode.
3.3. Detekcija i brojanje *Escherichia coli* i koliformnih bakterija metodom membranske filtracije

Detekcija i brojanje *Escherichia coli* i koliformnih bakterija metodom membranske filtracije, obavljena je prema normi HRN EN ISO 9308-1:2014. Metoda se temelji na membranskoj filtraciji određenog volumena uzorka vode, inkubaciji koncentrata nakon membranske filtracije, na kromogenom agar mediju, pri određenoj temperaturi, te procjena kolonija nakon potvrdnog testa. Da bi se obavila analiza i detekcija *Escherichia coli* i koliformnih bakterija korištena je određena oprema, pribor, podloge i reagensi:

- uređaj za membransku filtraciju, s membranskim filterima, cijevima za vakum i bocom za prihvat tekućine koji se mogu priključiti na vakum,
- uređaj za inkubaciju - termostat (37±2°C),
- sterilni membranski filteri, s veličinom pora od 0,45 µm,
- pinceta sa zaobljenim vrhom, za rukovanje sa membranskim filterima,
- plamenik, za sterilizaciju plamenom,
- Chromogenic coliform agar (CCA), diferencijalna podloga za detekciju i brojanje koliformnih bakterija i *E.coli*,
- Tripton soja agar, neselektivna podloga za precjepljivanje tipičnih kolonija za identifikaciju i potvrdu,
➢ Oksidaza reagens, papirnati diskovi za Oksidaza test.

Iz broja tipičnih kolonija izbrojanih na filterima i rezultata potvrđnih testova, procjeni se broj koliformnih bakterija, te Escherichia coli. Procijenjen broj tipičnih kolonija izražava se kao cfu/100 ml, a izračunava se prema formuli:

\[
Cs = \frac{Z}{V_{tot}} \cdot Vs \quad (1.)
\]

Cs je procijenjen broj tipičnih kolonija – cfu u 100 ml
Z je suma kolonija izbrojanih na svim filterima
Vtot je ukupni profiltrirani volumen uzoraka
Vs je referencirani volumen 100 ml
3.4. Detekcija i brojane Enterokoka metodom membranske filtracije

Metoda detekcije i brojanje Enterokoka metodom membranske filtracije, provodi se prema normi HRN EN ISO 7899-2;2000. Metoda se temelji na membranskoj filtraciji određenog volumena uzorka vode, inkubaciji koncentrata nakon membranske filtracije, na kromogenom agar mediju, pri određenoj temperaturi, te procjena kolonija nakon potvrdnog testa. Potrebna oprema, pribor podloge i reagensi za detekciju i brojanje Enterokoka su:

- uređaj za membransku filtraciju, s membranskim filterima, cijevima za vakum i bocom za prihvat tekućine koji se mogu priključiti na vakum,
- uređaj za inkubaciju, termostat (37±2°C),
- uređaj za inkubaciju, termostat (44±0,5°C),
- sterilni membranski filteri, sa porama veličine 0,45 µm,
- pinceta sa zaobljenim vrhom, za rukovanje sa membranskim filterima,
- plamenik, za sterilizaciju plamenom,
- Slanetz Bartley agar, selektivna podloga za brojanje i detekciju Enterokoka,
- Bile aesculin azide agar iso form, selektivna podloga sa Na-azidom za potvrđi test.

Nakon membranske filtracije uzorka, sterilnom pincetom se makne membranski filtir s osnovice držača filtera i stavi na selektivnu podlogu u Petrijevu zdjelicu sa Slanetz Bartley agarom, pazeći da ne zaostanu mjehurići zraka između membrane i površine agara. Inkubacija traje 44±4 sata na temperaturi 36±2°C. Nakon inkubacije poboje se sve kolonije kesten, crvene ili ružičaste boje, kao tipične kolonije. Dokazivanje Enterokoka provodi se tako da se filter sa
Kolonijama prenese na ploču sa Bile aesculin azide agarom, koji je zagrijan na 44°C, te inkubira 2 sata pri 44±0,5°C. Nakon inkubacije pbroje se sve kolonije tamnosmeđe ili crni boje, kao kolonije Enterokoka. Rezultati se izražavaju tako da se iz broja tipičnih kolonija izbrojanih na filterima i rezultata potvrđnih testova, procjenjeni broj kolonija Enterokoka. Procijenjeni broj tipičnih kolonija izražava se u cfu/100 ml, a izračunava se prema formuli:

\[Cs = \frac{Z}{V_{tot}} \cdot Vs \] (2.)

Cs je procijenjen broj tipičnih kolonija – cfu u 100 ml
Z je suma kolonija izbrojanih na svim filterima
Vtot je ukupni profiltrirani volumen uzoraka
Vs je referencirani volumen 100 ml

Broj potvrđenih kolonija po ploči nakon identifikacije i potvrde izračunava se prema formuli:

\[X = \frac{k}{n} \cdot z \] (3.)

X je procijenjen broj potvrđenih kolonija na ploči
k je broj potvrđenih kolonija (dobivenih identifikacijom i potvrdom)
n je broj ispitanih kolonija
z je procijenjen broj tipičnih kolonija po ploči

Procijenjen broj potvrđenih kolonija nakon identifikacije i potvrde izražava se kao cfu/100 ml a izračunava se prema formuli:

\[Cs = \frac{X}{V_{tot}} \cdot Vs \] (4.)
3.5. Priprema podloge i određivanje ukupnog broja kolonija na 22°C i 37°C

Metoda se temelji na miješanju određenog volumena uzorka vode (1 ml ili 0,1 ml) sa hranjivim agarom u Petrijevoj zdjelici, inkubacija je 44±4 sata pri temperaturi 37±2°C i 68±44 sati pri temperaturi 22±2°C, te procjena broja kolonija po ml uzorka. Oprema, pribor, podloge i reagensi potrebni za detekciju i brojanje broja kolonija su:

- termostat, uređaj za inkubaciju (37±2°C),
- termostat, uređaj za inkubaciju (22±2°C),
- sterilne Pasteur pipete, za pipetiranje uzorka,
- plamenik za sterilizaciju plamenom,
- Yeast ekstrakt agar (Agar sa ekstrakтом kvasca), neselektivna podloga za uzgoj i brojenje kolonija.

Sterilnom Pasteur pipetom odpipetira se po 1 ml uzorka u dvije Petrijeve zdjelice te se zalije po 15-20 ml Yeast ekstrakt agar a otopljenog i ohlađenog na 45°C. Pažljivo se izmiješa blagom rotacijom. Ostavi se da se podloga skrutne, zatim preokrene zdjelica i inkubira 44 sata, pri temperaturi od 37°C i 68 sati pri temperaturi na 22°C.
Nakon inkubacije pobroje se sve kolonije prisutne na svakoj ploči te procjeni, broj kolonija u 1 ml. Procijenjen broj kolonija izražava se kao cfu/1 ml, a izračunava se prema formuli:

$$Cs = \frac{Z}{V_{tot}} * Vs \ (5.)$$

Cs je procijenjen broj kolonija u cfu/1 ml
Z je suma kolonija izbrojani na svim pločama
Vtot je ukupni najepljeni volumen uzorka
Vs je referentni volumen (1 ml)
3.6. Metoda detekcije i brojanje *Pseudomonas aeruginosa* metodom membranske filtracije

Metoda detekcije i brojanje *Pseudomonas aeruginosa* metodom membranske filtracije provodi se prema normi HRN EN ISO 16266:2008. Metoda se temelji na membranskoj filtraciji određenog volumena uzorka vode, inkubaciji koncentrata nakon membranske filtracije na određenom selektivnom mediju, pri određenoj temperaturi, te procjena kolonija nakon potvrđnog testa. Za detekciju i brojanje *Pseudomonas aeruginosa* metodom membranske filtracije, potrebni su određena oprema, pribor, podloge i reagensi:

- uređaj za membransku filtraciju, s membranskim filterima, cijevima za vakum i bocom za prihvat tekućine koji se mogu priključiti na vakum,
- termostat, uređaj za inkubaciju (37±2°C),
- termostat, uređaj za inkubaciju (44,0±0,5°C),
- sterilni membranski filteri, sa porama veličine od 0,45 µm,
- pinceta sa zaobljenim vrhom, za rukovanje sa membranskim filterima,
- plamenik za sterilizaciju plamenom,
- *Pseudomonas CN agar* - selektivna podloga za detekciju i brojanje *Pseudomonas aeruginosa*,
- Nutrient agar - neselektivna podloga za precjepljivanje tipičnih kolonija za identifikaciju i potvrdu,
- Acetamid bujon - selektivna podloga sa Na–azidom za potvrđni test stvaranja amonija,
- Bios discs O - papirnati diskovi za Oxidaza test,
- King’s B medij - podloga za potvrđni test fluorescencije oxidaza pozitivnih kolonija,
Nessler reagens - reagens za test stvaranja amonija.

Nakon membranske filtracije uzorka vode, sterilnom pincetom makne se membranski filter s osnovice držača filtera i stavi se na selektivnu podlogu u Petrijevu zdjelicu s Pseudomonas CN agarom, pazeći da ne zaostanu mjehurići zraka između membrane i površine agara i inkubira 44±4 sata, na temperaturi 37±2°C. Nakon potrebne inkubacije pobroje se sve plavozelene kolonije kao potvrđene kolonije *Pseudomonas aeruginosa*. Nakon toga filter se pogleda pod UV lampom i pobroje sve kolonije koje fluoresciraju, kao vjerojatne kolonije *Pseudomonas aeruginosa*, koje se zatim dokazuju sa Acetamid bujom. Također se pobroje sve crveno smeđe pigmentirane kolonije, kao vjerojatne kolonije *Pseudomonas aeruginosa*, koje se potvrđuju Oxidaza testom, Acetamid bujom i King’s B medijem. Crveno-smeđe kolonije i kolonije koje fluoresciraju pod UV lampama, precijepe se na Nutrient agar i inkubiraju 22±2 sata na temperaturi 37±2°C. Nakon inkubacije precjepljenih crveno-smeđih kolonija, provodi se Oxidaza test. Nakon inkubacije precjepljenih kolonija, koje fluoresciraju pod UV lampom, porasle kolonije se precjepljuju u Acetamid bujon. Iz broja vjerojatnih kolonija, izbrojenih na filtrima i rezultata potvrđnih testova, procjeni se broj kolonija *Pseudomonas aeruginosa*.

3.6.1. Oxidaza test

Provodi se tako da se ezom uzme dio kolonije i razmaže na papirnati disk, za oxidaza test. Pojava plavo-ljubičaste boje unutar 30 sekundi smatra se pozitivnom reakcijom (oxidaza pozitivna reakcija).

3.6.2. King's B medij

Ooxidaza pozitivne crveno-smeđe kolonije precijepe se na King's B medij i inkubiraju do 5 dana na 37±2°C. Najčešće je dovoljna inkubacija od 24 sata. Svakodnevno se treba pregledavati pod UV lampom i zabilježiti prisutnost bilo kakve fluorescencije u periodu do 5 dana.
3.6.3. Acetamid bujon

Kolonije porasle na Nutrient agaru precijepe se na Acetamid bujon inkubiraju 22±2 sata na temperaturi 37±2°C. Doda se 1-2 kapi Nessler reagensa. Promjena boje iz žute u cigla-crvenu dokaz je stvaranja amonija.

Procijenjen broj kolonija Pseudomonas aeruginosa (Cs) izražava se kao cfu/100 ml i izračunava se prema formuli:

\[C_s = P + F \left(\frac{c_F}{n_F} \right) + R \left(\frac{c_R}{n_R} \right) \] (6.)

P - broj plavo/zelenih kolonija
F - broj fluorescentnih kolonija
R - broj crveno-smđih kolonija
\(c_F \) - broj fluorescentnih kolonija testiranih koje stvaraju amonija
\(n_F \) - broj fluorescentnih kolonija testiranih na stvaranje amonija
\(c_R \) - broj crveno-smeđih kolonija koje su oxidaza pozitivne, stvaraju amonij i fluoresciraju na King’s B mediju
\(n_R \) - broj crveno-smeđih kolonija testiranih na stvaranje oxidaze i i fluoresciraju na King’s B mediju

Slika 9. Pseudomonas aeruginosa (Izvor: autor)
4. REZULTATI

Slika 10. Ukupni koliformi u uzorcima

Slika 11. *Escherichia coli* u uzorcima
Slika 12. Enterokoki u uzorcima

Slika 13. Broj kolonija na 37°C u uzorcima
Slika 14. Broj kolonija na 22°C u uzorcima

Slika 15. *Pseudomonas aeruginosa* u uzorcima
5. RASPRAVA

Slika 10 prikazuje ukupan broj kolonija koliformnih bakterija u 100 ml vode, koja je uzorkovana iz šest različitih bunara. Iz rezultata je vidljivo da broj ukupnih kolonija u većini uzoraka prelazi 900 cfu/100 ml, jedino uzorak 2 pokazuje daleko manji broj kolonija u odnosu na ostale uzorke. Budući da je MDK za ukupane koliforme 0, rezultati pokazuju da se radi o zdravstveno neispravnoj vodi na koliformne bakterije.

Slika 11 prikazuje broj kolonija *Escherichie coli* u 100 ml uzoraka bunarske vode. Rezultati pokazuju da je jedino voda iz bunara 2 zdravstveno ispravna s obzirom na prisutnost *Escherichie coli*, jer su MDK za *Escherichia coli* 0. Rezultati bunara 4 i 6 pokazuju veliku zagađenost vode *Escherichiom coli*, dok voda iz bunara 1, 3 i 5, pokazuje relativno malu zagađenost vode *Escherichiom coli*, ali s obzirom na zakonske propise i ta voda je zdravstveno neispravna.

Slika 12 prikazuje broj Enterokoka u 100 ml uzorkovane vode. Prema zakonskim propisima MDK vrijednosti za Enterokoke iznosi 0. Na slici je vidljivo da od šest uzetih uzoraka vode samo uzorak vode iz bunara 2 zadovoljava zakonske propise. Također se može vidjeti da uzorci 4, 5 i 6, sadrže znatno veći broj kolonija Enterokoka od maksimalno dopuštene koncentracije.

Slika 13 prikazuje broj poraslih kolonije u 1 ml uzorka, na hranjivoj podlozi pri temperaturi od 37°C. Rezultati pokazuju da samo voda iz bunara 2 zadovoljava zadane MDK vrijednosti, dok ostali uzorci vode ne zadovoljavaju, s tim da voda iz bunara 4, 5 i 6 pokazuje veliko odstupanje od MDK vrijednosti.

Slika 14 prikazuje broj poraslih kolonije u 1 ml uzorka vode, na hranjivoj podlozi pri temperaturi od 22°C. Iz rezultata se vidi da niti jedan uzorak vode ne zadovoljava zadane MDK vrijednosti, a bunari 4, 5 i 6 pokazuju veliko odstupanje od MDK, odnosno vidljivo je da se radi o velikoj mikrobiološkoj zagađenosti vode.

Slika 15 prikazuje broj bakterija *Pseudomonas aeruginosa* u 100 ml vode, koje su porasle na hranivom agaru. MDK vrijednosti za *Pseudomonas aeruginasa* je 0, iz rezultata je vidljivo da svi ispitivani uzorci vode, ne zadovoljavaju zakonske propise, odnosno da se radi o zdravstveno neispravnoj vodi.
6. ZAKLJUČAK

- prema rezultatima analiziranih uzoraka vode, može se zaključiti da niti jedan uzorak vode ne udovoljava mikrobiološkim uvjetima iz Pravilnika o parametrima sukladnosti i metodama analize vode za ljudsku potrošnju
- u svim analiziranim uzorcima nalaze se koliformne bakterije
- većina analiziranih uzoraka vode sadrži bakteriju E. coli i Enterokoke
- svi uzorci vode sadrže bakteriju Pseudomonas aeruginosa
- bunari u domaćinstvima nisu dovoljno zaštićeni od vanjskog onečišćenja
- prema raspoloživim podacima, lokacije bunara i njihove zaštićenosti od onečišćenja, možemo zaključiti da su glavni izvori kontaminacije uzrokovani blizinom septičkih jama i staja
- rezultati ispitivanih uzoraka pokazuju da se neredovito provodi postupak dezinfekcije vode, kao i nepoznavanje važnosti dezinfekcije
- preporuka je izvršiti dezinfekciju vode s Izosanom G u količini od 2 g/1000 L vode, te iza toga ponoviti analize odnosno provjeriti učinak dezinfekcije
LITERATURA

7. Pravilnik o parametrima sukladnosti i metodama analize vode za ljudsku potrošnju, NN 125/13,141/13,128/15.

11. Anonymous_1. 15.7.2016. https://www.google.hr/search?q=gra%C4%91a+bakterijske+stanice&espv=2&biw=1920 &bih=974&source=lnms&tbm=isch&sa=X&ved=0ahUKEwjklemAub4oAhUKwEqKHXSSC8gQ_WtCI4Q_AUICCgB#tbm=isch&q=bakterijske+stanice&imgrc=cvYRE0W-MvkVoM%3A

12. Anonymus_2. 15.7.2016. https://www.google.hr/search?q=krivulja+rasta+bakterije&espv=2&biw=1920&bih=974 &source=lnms&tbm=isch&sa=X&ved=0ahUKEwiOipb4ubnPAhVBK8AKHXSSC8gQ_AUIBtg#imgrc=Opoe1ZfY62NZ9M%3A

14. Upute za uzimanje uzoraka vode, Hrvatski zavod za javno zdravstvo. www.hzjz.hr (20.5.2017.)
POPIS SLIKA

Slika 1. Bakterijska stanica
Slika 2. Krivulja rasta bakterija
Slika 3. Plavo obojene kolonije Escherichia coli i žućkasto obojene kolonije drugih koliformnih bakterija
Slika 4. Uređaj za membransku filtraciju
Slika 5. Koliformne bakterije i Escherichia coli
Slika 6. Enterokoki
Slika 7. Yeast ekstrakt agar
Slika 8. Porasle kolonije na 37°C i 22°C
Slika 9. Pseudomonas aeruginosa
Slika 10. Ukupni koliformi u uzetim uzorcima
Slika 11. Escherichia coli u uzetim uzorcima
Slika 12. Enterokoki u uzetim uzorcima
Slika 13. Broj kolonija na 37°C u uzetim uzorcima
Slika 14. Broj kolonija na 22°C u uzetim uzorcima
Slika 15. Pseudomonas aeruginosa u uzetim uzorcima

POPIS TABLICA

Tablica 1. Parametri zdravstvene ispravnosti vode

POPIS KRATICA I SIMBOLA

MDK- maksimalno dopuštena koncentracija
H$_2$O - voda
°C – stupanj celzijus
µm - mikrometar
nm - nanometar
NN - Narodne Novine
E.coli- Escherichia coli
DNA - deoksiribonukleinska kiselina
RNA - ribonukleinska kiselina
HRN – Hrvatska norma
EN – Europska norma
ISO - International Organization for Standardization, Međunarodna organizacija za standardizaciju
UV zračenje- ultraviolet, ultraljubičasto zračenje
CCA - Chromogenic coliform agar, diferencijalna podloga za detekciju i brojanje koliformnih bakterija i E. coli
TSA – Tripton soja agar
ml - mililitar
cfu – Colony forming unit
IZJAVA O AUTORSTVU RADA

Ja, Marko Ilić, pod punom moralnom, materijalnom i kaznenom odgovornošću, izjavljujem da sam isključivi autor završnog rada pod naslovom: Mikrobiološka kontrola bunarske vode u selima Općine Brestovac, te da u navedenom radu nisu na nedozvoljen način korišteni dijelovi tuđih radova.

U Požegi, 06.06.2017.

Marko Ilić